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Statistical Intervals

• Decisions are frequently made based on limited sample data
– Examples: Strength of a material must be at least X 

Minimum strength of a material must exceed max load applied
Determine minimum strength of a material over several environments

• Sample data can be used to estimate mean strength or probability 
of exceeding limits, but provides no information about the precision 
of the estimates
– There may be big differences between the estimated values and what 

the true values are, if unlimited data were available
• Statistical intervals quantify the uncertainty associated with an 

estimate
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Types of Statistical Intervals

• Appropriate type statistical interval depends on the application
– Confidence and Tolerance Intervals are for describing the population or process 

from which the sample data has been selected
– Prediction Intervals are for predicting the results of a future sample

• Confidence intervals: enclose means, variances and other population 
parameters 

• Tolerance intervals are used to contain a specified proportion of a 
population
– Lower tolerance bound for bounding the population from below (minimum 

strength)
– Upper tolerance bound for bounding the population from above (maximum load)
– Tolerance interval for enclosing the population both above and below

• Example: If T is an upper tolerance bound with 90% confidence for .99 of 
the population, then we are 90% confident that 99% of the population is 
less than T
– T is denoted as a (.99, .90), where 99 represents the proportion of the population 

bounded and 90 represents the confidence level 
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1-Percentile of Normal Distribution
• Assume the population is normal

– Mean (µ = 200) and variance (σ2 = 400)
• Then the 1-percentile =

• When the mean and variance are both unknown, we must sample from this 
distribution to estimate the 1-percentile  

5.153326.2 =− σµ

True 1-percentile
99% of the population is 
greater than the 1-percentile
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Sample of 10 Measurements Used to Estimate 1-Percentile

• Use sample mean,    , in place of µ and sample variance, s2, in place of σ2

• Estimated 1-percentile =    

Estimated 1-percentile
Estimated distribution 

from sample

Sampled 
data points

x
sx 326.2−
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Another Sample of 10 Measurements Used to Estimate 1-Percentile

• Use sample mean,    , in place of µ and sample variance, s2, in place of σ2

• Estimated 1-percentile =  sx 326.2−
x

Estimated 1-percentile
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• Use sample mean,    , in place of µ and sample variance, s2, in place of σ2

• Estimated 1-percentile = 

• A (.99,.90) lower tolerance bound is of the form: 
– k is selected so that 90% of the samples will produce a bound that encloses 99 percent of the 

population (k = 3.532 for sample size of 10)
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100 Samples of 10 Measurements Used to Estimate 99-percentile

100 estimates of 1-percentile

55% of estimates 
are too large

ksx −

sx 326.2−
x
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• Use sample mean,    , in place of µ and sample variance, s2, in place of σ2

• (.99,.90) Lower tolerance bound = 

• Increasing sample size will decrease spread of tolerance bounds
• Increasing confidence level will decrease percent of time tolerance bound is too large 

(.01,.90) Lower Tolerance Bounds: 100 Samples of 10 Measurements

x

100 tolerance bounds

10% of bounds 
are too large

sx 532.3−
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Tolerance Bounds for Normal Distribution

• X1, X2, …, Xn sample from normal population, N(μ,σ2), with 
unknown μ and σ2

– Let zp be the p quantile of standard normal distribution
– p quantile of N(μ,σ2) is qp = μ + zp σ

• The 1-α upper confidence bound for qp is a (p,1- α) one-sided upper 
tolerance bound for N(μ,σ2)
– Find k such that 

– Or                                              (Non-central t distribution)

– k = 

• The (p,1- α) upper tolerance bound is

• The (p,1- α) lower tolerance bound is  
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Splus Code for Normal Tolerance Bound

# Computes (p,1-alpha) upper tolerance bound on X ~ Normal
# 
# Inputs: xdata (vector of sample data), p = percentile, alpha = 1 - confidence level

library(envstats) # library for non-central t

UpperToleranceBound <- function(p,alpha,xdata){
n <- length(xdata)
Ssq <- var(xdata)
UTB <- mean(xdata) + qt(1-alpha, n-1, ncp = qnorm(p)*sqrt(n))*sqrt(Ssq/n)
UTB

}

# Example
> xdata <- c(1.822938, 1.143871, 0.972309, -0.078231, 0.480773, 0.710025, -0.573717, 
0.272126, 0.016359, -0.596675)
> UpperToleranceBound(.99,.10,xdata)
[1] 3.1371
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Orbiter Heat Shield Main Engine Ignition Acoustic Environment

• After post flight analysis, 16 
flights remaining with data 
judged suitable for use in 
updating base heat shield 
environment limits

• MIL-STD- 1540E and NASA 
STD –HDBK-7005 approach for 
this limit:

• (.99,.90) upper tolerance 
bound used for qualification 
testing 

• (.95,.50) upper tolerance 
bound used for acceptance 
test

Upper Tolerance Bound Example

• STS acoustic vibration dataset:
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Orbiter Heat Shield Main Engine Ignition Acoustic Environment

• Assume independence 
between frequency bands

• Probability plots show data can 
be reasonably modeled by 
normal distribution

• Normal upper tolerance 
bounds:
– (.99,.90): 
– (.95,.50): 

Upper Tolerance Bound Example (2) 

• Results
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Tolerance Bound

(.95,.50) Upper 
Tolerance Bound
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CEV Parachute Assembly System (CPAS) Reliability 

• To calculate the reliability for the main and drogue parachute components, both the 
strength and load distributions are characterized by independent normal distributions

• Reliability, R, is the probability that the strength, X, is greater then the load, Y, i.e. 
P(X-Y > 0)
– Distribution of X-Y is normal with mean µX - µY , and variance   

– R =                          , where     is the cumulative normal distribution 

– Since the means and variances are unknown, we can only estimate the reliability 
so we also need a lower confidence bound on R

• If we select a quantile, p, such that the (p,1-α) lower tolerance bound = 0, then p is a 
100(1- α )% lower confidence bound on R

Load-Strength Reliability Problem
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Lower Tolerance Bounds for X-Y

• X1, X2, … Xn1
sample from normal population, N(μX,σX

2),
• Y1, Y2, … Yn2

sample from normal population, N(μY,σY
2),

• 1-p quantile is:                                                  
• The (p,1-α) lower tolerance bound is:

– Exact solution if ratio of variances is known (Hall):

– Approximate solution for unknown and arbitrary variances (Guo-Krishnamoorthy):
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• Approximate (p,.90) Lower 
Tolerance bounds 

• 90% confident that 
P(strength > load) > .9656

CEV Parachute Assembly System (CPAS) Reliability 

• Simulated data: 20 strength, 7 load measurements:

Load-Strength Reliability Problem (2) 

p (p,.90) LTB
.99 -1.25

.98 -0.57

.97 -0.14

.9656 0.00

.96 0.17

Strength 16.1 17.4 14.6 12.8 14.0 15.0 14.3 12.9 15.7 14.4 15.6 13.3 13.8 13.9 12.2 12.4 12.8 14.4 15.1
Load 9.3 9.2 6.3 9.6 9.0 9.6 10.7
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Splus Code for Lower Tolerance Bound on X-Y
Ratio of Variances Known

# Computes (p,1-alpha) lower tolerance bound on X-Y for known ratio of variances
# inputs: xdata, ydata both vectors, p = percentile, alpha = 1 - confidence level, q1 = (sigma1/sigma2)^2

library(envstats) # library for non-central t

Tolerance2distsKnownRatio <- function(p,alpha,q1,xdata,ydata)
{

n1 <- length(xdata)
n2 <- length(ydata)
Sdsq <- (1+1/q1)*((n1-1)*var(xdata)+(n2-1)*q1*var(ydata))/(n1+n2-2)
v1 <- n1*(1+q1)/(q1+n1/n2)
LTB <- mean(xdata)-mean(ydata)-qt(1-alpha,n1+n2-2, ncp = qnorm(p)*sqrt(v1))*sqrt(Sdsq/v1)
LTB

}
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Splus Code for Lower Tolerance Bound on X-Y
Unknown Arbitrary Variances

# Computes (p,1-alpha) lower tolerance bound on X-Y for unknown variances
# inputs: xdata, ydata both vectors, p = percentile, alpha = 1 - confidence level

library(envstats) # library for non-central t

Tolerance2distsUnknownRatio <- function(p,alpha,xdata,ydata)
{

n1 <- length(xdata)
n2 <- length(ydata)
S1sq <- var(xdata)
S2sq <- var(ydata)
q1 <- S1sq*(n2-3)/S2sq/(n2-1)
q2 <- S2sq*(n1-3)/S1sq/(n1-1)
v1 <- n1*(1+q1)/(q1+n1/n2)
v2 <- n2*(1+q2)/(q2+n2/n1)
f1 <- (n1-1)*(q1+1)^2/(q1^2+(n1-1)/(n2-1))
f2 <- (n2-1)*(q2+1)^2/(q2^2+(n2-1)/(n1-1))
LTB1 <- mean(xdata)-mean(ydata)-qt(1-alpha,f1, ncp = qnorm(p)*sqrt(v1))*sqrt((S1sq+S2sq)/v1)
LTB2 <- mean(xdata)-mean(ydata)-qt(1-alpha,f2, ncp = qnorm(p)*sqrt(v2))*sqrt((S1sq+S2sq)/v2)
LTB <- min(LTB1,LTB2)

}
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Structural Allowable for Silica Cloth Phenolic

• Silica Cloth Phenolic (SCP) is used as part of the RSRM and RSRM-V 
nozzles (TPS for flex bearing)

• Allowable stress ( working stress or design allowable) for a material is the 
maximum stress at which one can be reasonably certain that failure will not 
occur

• Two one-sided tolerance limits are used 
– A-basis: (.99,.95) lower tolerance bound on material strength
– B-basis: (.90,.95) lower tolerance bound on material strength

• Strength of composite materials may have several sources of variation
– Lot, Rolls, Panel
– Temperature
– Within panel variation
– Other sources

• Data with multiple sources of variability should be tested to 
determine if data is structured

Structured Data Example

Panels
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Rolls

1

1 32

2 3 4 5 6
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Structural Allowable for Silica Cloth Phenolic

• Silica Cloth Phenolic Panel Across-Ply Tensile Strength Data

• Objective: Determine lower tolerance bound at each temperature

Structured Data Example (2) 
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Silica Cloth Phenolic Panel Across-Ply Tensile Strength Data
Single Test Temperature

Anderson-Darling k-sample test proves the data is structured 

Data from same lots are circled

Lots with data 
from multiple rolls

Structural Allowable for Silica Cloth Phenolic
Structured Data Example (3) 
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Lot ID Roll ID Samples

3 3 5

4 4 6

5 5 6

6 6 3

7 7 3

8 8 3

9 9 5

10 10 5

11 11 3

12 12 10

13 13 3

14

14 3

15 3

16 6

17 3

15

18 3

19 3

20 3

21 3

22 3

16
23 3

24 3

17 25 3

18 26 3

• Randomly draw 16 lot means from 
N(µ,σlot)

• Randomly draw 24 roll means 
from N(0, σroll|lot)

• Randomly draw 94 residual values 
from N(0, σe)

• Combine random data into lot, roll, 
sample data structure 

Estimating Data with 70 F Data Structure
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Structural Allowable for Silica Cloth Phenolic 

• (.99,.95) normal tolerance bounds applied to structured data
– Using the estimated structure as in the SCP Tensile Strength data, 100 

samples of size 94 are drawn and the tolerance bound is calculated
– Simulated data includes variability between lot, within lots, within 

roll/panel 

• Normal tolerance bound is an overestimate approximately 35% of 
the time, not effective for structured data

Structured Data Example (4) 
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Mixed Effects Model For Silica Cloth Phenolic
Structured Data Example (5) 

• Strength(T) = β0 + β1T+ L + R + εk        [   Normal(β0 + β1T,                         )  ]
– T = temperature of SCP
– β0, β1 = slope and intercept parameters
– L = random lot effects, Normal( 0, σlot )
– R = random roll effect within a lot, Normal( 0, σroll|lot )
– εk = Normal( 0, σe )
– Panel-to-panel variability ignored (only lot 14 roll 16 has more than 1 panel)

• 1-Percentile of strength = β0 + β1T - 2.326

• (.99,.95) lower tolerance bound is a 95% lower confidence bound on 1-
percentile

– Methods for computing tolerance bounds for this type of structured data are 
currently not available (unbalanced data with more than two variance terms)

– Methods exist for unbalanced data with two variance terms and balanced data 
with more than two variance terms

22
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Structural Allowable for Silica Cloth Phenolic
Structured Data Example (6)

• Silica Cloth Phenolic Panel Across-Ply Tensile Strength Data at 70 C
– Model as a mixed model with one random effect and unbalanced data

• Temperature is fixed effect
• Combine lot and roll effect into single effect 
• Strength(T) = β0 + β1T+ L + εk       [   Normal(β0 + β1T,                  )  ]

• Approximate methods exist for this case
– RECIPE ANOVA model used to compute (.99,.95) lower tolerance bound

• http://www.itl.nist.gov/div898/software/recipe/
– Splus  code (based on Krishnamoorthy & Mathew )
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Splus Code for Balanced Mixed Effects Models
# Computes Lower Tolerance Bounds for a Balanced Nested Design
# 1 Fixed Factor (Temperature) and 1 Random Factor (lot)
# Temperature has a levels and lot has b levels and n is the number of replicates
# Observed data is an array Y(i,j,el), i=1,2,...a, j=1,2,...,b, el=1,2,...,n
# p = the percentile of the tolerance bound
# alpha = 1 - confidence level of the tolerance bound

LTBmixedUnbalanced <- function(p,alpha,Y){
a <- dim(Y)[1]
b <- dim(Y)[2]
n <- dim(Y)[3]
f1 <- a*(b-1)
f2 <- a*b*(n-1)
d1 <- 1/(n*b)
d2 <- (b-1)/(n*b)
c1 <- 1/n
c2 <- 1 - 1/n
LTB <- rep(0,a)
for (temp in 1:a){

theta_hat <- sum(Y[temp,,])/(b*n)  # Step 1
ss1 <- 0
for (i in 1:a){

for(j in 1:b){
ss1 <- ss1 + ( sum(Y[i,j,])/n - sum(Y[i,,])/(b*n) )^2

}
}
ss2 <- 0
for (i in 1:a){

for(j in 1:b){
for (el in 1:n){

ss2 <- ss2 + ( Y[i,j,el] - sum(Y[i,j,])/n )^2
}

}
}
k <- 100000  # Step 2
Z <- rnorm(k)  # Step 3
U1 <- rchisq(k,f1)
U2 <- rchisq(k,f2)
G1 <- ss1/U1  # Step 4
G2 <- ss2/U2
Gtheta <- theta_hat - Z*sqrt(d1*G1 + d2*G2)
G8 <- Gtheta - qnorm(p)*sqrt(c1*G1 + c2*G2)  # Step 5
LTB[temp] <- quantile(G8,alpha)

}
LTB

}
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Summary

• Tolerance bounds are commonly used to verify requirements on 
space systems
– Determines limits of acceptability
– Can also be used to determine required sample sizes 
– Includes uncertainty due to small sample sizes

• Computing tolerance bounds
– First check distribution of data

• There are tolerance bounds for other types of distributions
– Check for structured data
– Apply correct method

• Research area: Tolerance bounds for general mixed effects or 
random effects models with unbalanced data
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