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Wishful thinking

• Using inputs or models because they are 

convenient, or because you hope they‟re true



Kansai International Airport

• 30 km from Kobe in Osaka Bay

• Artificial island made with fill

• Engineers told planners it‟d sink [6, 8] m

• Planners elected to design for 6 m

• It‟s sunk 9 m so far and is still sinking

(The operator of the airport denies these media reports)



Variability = aleatory uncertainty

• Arises from natural stochasticity

• Variability arises from

– spatial variation

– temporal fluctuations

– manufacturing or genetic differences

• Not reducible by empirical effort



Incertitude = epistemic uncertainty

• Arises from incomplete knowledge

• Incertitude arises from

– limited sample size

– mensurational limits („measurement error‟)

– use of surrogate data

• Reducible with empirical effort



Suppose

A is in [2, 4]

B is in [3, 5]

What can be said about the sum A+B?

4 6 8 10

The right answer for 

engineering is [5,9]

Propagating incertitude



They must be treated differently

• Variability should be modeled as randomness 

with the methods of probability theory

• Incertitude should be modeled as ignorance 

with the methods of interval analysis

• Imprecise probabilities can do both at once



Incertitude is common in engineering

• Periodic observations
When did the fish in my aquarium die during the night?

• Plus-or-minus measurement uncertainties
Coarse measurements, measurements from digital readouts

• Non-detects and data censoring
Chemical detection limits, studies prematurely terminated

• Privacy requirements
Epidemiological or medical information, census data

• Theoretical constraints
Concentrations, solubilities, probabilities, survival rates

• Bounding studies 
Presumed or hypothetical limits in what-if calculations



Wishful thinking

• Pretending you know the

– Value

– Distribution function

– Dependence

– Model 

when you don‟t is wishful thinking

• Uncertainty analysis makes a prudent analysis
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Traditional uncertainty analyses

• Interval analysis

• Taylor series approximations (delta method)

• Normal theory propagation (ISO/NIST)

• Monte Carlo simulation

• Stochastic PDEs

• Two-dimensional Monte Carlo



Untenable assumptions

• Uncertainties are small

• Distribution shapes are known

• Sources of variation are independent

• Uncertainties cancel each other out

• Linearized models good enough

• Underlying physics is known and modeled



Need ways to relax assumptions

• Hard to say what the distribution is precisely

• Non-independent, or unknown dependencies

• Uncertainties that may not cancel

• Possibly large uncertainties

• Model uncertainty



Probability bounds analysis (PBA)

• Sidesteps the major criticisms 

– Doesn‟t force you to make any assumptions

– Can use only whatever information is available

• Bridges worst case and probabilistic analysis

• Distinguishes variability and incertitude

• Acceptable to both Bayesians and frequentists
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Uncertain numbers

Not a uniform 

distribution
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Uncertainty arithmetic

• We can do math on p-boxes

• When inputs are distributions, the answers 

conform with probability theory

• When inputs are intervals, the results agree 

with interval (worst case) analysis



Calculations

• All standard mathematical operations
– Arithmetic (+, , , , ^, min, max)

– Transformations (exp, ln, sin, tan, abs, sqrt, etc.)

– Magnitude comparisons (<, ≤, >, ≥, )

– Other operations (nonlinear ODEs, finite-element methods)

• Faster than Monte Carlo

• Guaranteed to bound the answer

• Optimal solutions often easy to compute



Probability bounds analysis

• Special case of imprecise probabilities

• Addresses many problems in risk analysis

– Input distributions unknown

– Imperfectly known correlation and dependency 

– Large measurement error, censoring

– Small sample sizes

– Model uncertainty



Better than sensitivity analysis

• Unknown distribution is hard for sensitivity 

analysis since infinite-dimensional problem

• Analysts usually fall back on a maximum 

entropy approach, which erases uncertainty 

rather than propagates it

• Bounding seems very reasonable, so long as 

it reflects all available information



Example: uncontrolled fire

F = A & B & C & D

Probability of ignition source

Probability of abundant fuel presence

Probability fire detection not timely

Probability of suppression system failure



Imperfect information

• Calculate A&B&C&D, with partial information:

– A‟s distribution is known, but not its parameters      

– B‟s parameters known, but not its shape

– C has a small empirical data set

– D is known to be a precise distribution

• Bounds assuming independence?

• Without any assumption about dependence?



A = {lognormal, mean = [.05,.06],  variance = [.0001,.001])

B = {min = 0, max = 0.05, mode = 0.03}

C = {sample data = 0.2, 0.5, 0.6, 0.7, 0.75, 0.8}

D = uniform(0, 1)
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Resulting answers
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Summary statistics
Independent

Range [0, 0.011]

Median [0, 0.00113] 

Mean [0.00006, 0.00119]  

Variance [2.9 10 9, 2.1 10 6] 

Standard deviation [0.000054, 0.0014] 

No assumptions about dependence

Range [0, 0.05]

Median [0, 0.04] 

Mean [0, 0.04]

Variance [0, 0.00052]

Standard deviation [0, 0.023] 



How to use the results

When uncertainty makes no difference
(because results are so clear), bounding gives 

confidence in the reliability of the decision

When uncertainty swamps the decision

(i) use other criteria within probability bounds, or

(ii) use results to identify inputs to study better



Justifying further empirical effort

• If incertitude is too wide for decisions, and 

bounds are best possible, more data is needed

• Strong argument for collecting more data



Advantages

• Computationally efficient

– No simulation or parallel calculations needed

• Fewer assumptions

– Not just different assumptions, fewer of them

– Distribution-free probabilistic risk analysis

• Rigorous results

– Built-in quality assurance

– Automatically verified calculation



Disadvantages

• P-boxes don‟t say what outcome is most likely

• Hard to get optimal bounds on non-tail risks

• Some technical limits (e.g., sensitive to 

repeated variables, tricky with black boxes)

• A p-box may not express the tightest possible 

bounds given all available information 

(although it often will)



Software

• UC add-in for Excel (NASA, beta 2011)

• RAMAS Risk Calc 4.0 (NIH, commercial)

• Statool (Dan Berleant, freeware)

• Constructor (Sandia and NIH, freeware)

• Pbox.r library for R

• PBDemo (freeware)

• Williamson and Downs (1990)































Diverse applications

• Superfund risk analyses

• Conservation biology extinction/reintroduction

• Occupational exposure assessment

• Food safety

• Chemostat dynamics

• Global climate change forecasts

• Safety of engineered systems 

• Engineering design
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Case study:

Spacecraft design under 

mission uncertainty



Mission

Deploy satellite carrying a large optical sensor

Sensor is 3.2 m long, 

weighs 720 kg and has an 

angular resolution of 

8.8

W
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Wertz and Larson (1999) Space Mission Analysis and Design (SMAD). Kluwer.
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Demonstrations

• Calculations within a single subsystem (ACS)

• Calculations within linked subsystems

Attitude 
control

Power

Solar 
array



Attitude control subsystem (ACS)

• 3 reaction wheels

• Design problem: solve for h

– Required angular momentum

– Needed to choose reaction wheels

• Mission constraints

– torbit = 1/4 orbit time

– slew = max slew angle

– tslew = min maneuver time

• Inputs from other subsystems

– I, Imax, Imin = inertial moment

– Depend on solar panel size, which 
depends on power needed, so on h
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Attitude control input variables
Symbol Unit Variable Type Value SMAD

Cd unitless Drag coefficient p-box range=[2,4]

mean=3.13

3.13

La m Aerodynamic drag torque moment p-box range=[0,3.75] 

mean=0.25

0.25

Lsp m Solar radiation torque moment p-box range=[0,3.75]

mean=[0.25]

0.25

Dr A m2 Residual dipole interval [0,1] 1

i degrees Sun incidence angle interval [0,90] 0

kg m3 Atmospheric density interval [3.96e-12, 

9.9e-11]

1.98e-11

degrees Major moment axis deviation from nadir interval [10,19] 10

q unitless Surface reflectivity interval [0.1,0.99] 0.6

Imin kg m2 Minimum moment of inertia interval [4655] 4655

Imax kg m2 Maximum moment of inertia interval [7315] 7315

m3 s-2 Earth gravity constant point 3.98e14 3.98e14

A m2 Area in the direction of flight point 3.752 3.752

RE km Earth radius point 6378.14 6378.14

H km Orbit altitude point 340 340

Fs W m-2 Average solar flux point 1367 1367

slew degrees Maximum slewing angle point 38 38

c m s-1 Light speed point 2.9979e8 2.9979e8

M A m2 Earth magnetic moment point 7.96e22 7.96e22

tslew s Minimum maneuver time point 760 760

As m2 Area reflecting solar radiation point 3.752 3.752

torbit s Quarter orbit period point 1370 1370



Coefficient of drag, Cd

Cd (unitless)
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Aerodynamic drag torque moment, La

La (m)
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Required angular momentum h
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Value of information: pinching 

Initial result

After pinching 
(atmospheric density)

(kg m-3) h (N m sec)
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Variables passed iteratively

• Minimum moment of inertia Imin

• Maximum moment of inertia Imax

• Total torque tot

• Total power Ptot

• Solar panel area Asa



Analysis of calculations

• Need to check that original SMAD values and all 

Monte Carlo simulations are enclosed by p-boxes

• Need to ensure iteration through links doesn‟t 

cause runaway uncertainty growth (or reduction)

• Four parallel analyses
– SMAD‟s point estimates

– Monte Carlo simulation

– P-boxes but without linkage among subsystems

– P-boxes with fully linked subsystems



Supports of results

tot (N m)
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SMAD point estimates



Case study findings

• Different answers are consistent
• Point estimates match the SMAD results

• P-boxes span the points and the Monte Carlo intervals

• Calculations workable
• No runaway inflation (or loss) of uncertainty

• Easier than with Monte Carlo

• Practical and interesting results
• Uncertainty can affect engineering decisions

• Reducing uncertainty about (by picking a launch date) 

strongly reduces design uncertainty



Accounting for epistemic and aleatory

uncertainty in early system design
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Uses for probability bounds analysis

• Uncertainty propagation

• Risk assessment

• Sensitivity analysis (for control and study)

• Reliability theory

• Engineering design

• Validation

• Decision theory

• Regulatory compliance

• Finite element modeling

• Differential equations







Differential equations



Uncertainty usually explodes

Time

x

The explosion can be traced 

to numerical instabilities



Uncertainty

• Artifactual uncertainty

– Too few polynomial terms

– Numerical instability

– Can be reduced by a better analysis

• Authentic uncertainty

– Genuine unpredictability due to input uncertainty

– Cannot be reduced by a better analysis

Only by more information, data or assumptions



Uncertainty propagation

• We want the prediction to „break down‟ if 

that‟s what should happen

• But we don‟t want artifactual uncertainty

– Numerical instabilities

– Wrapping effect

– Dependence problem

– Repeated parameters



Problem

• Nonlinear ordinary differential equation (ODE)

dx/dt = f(x, )

with uncertain and uncertain initial state x0

• Information about and x0 comes as

– Interval ranges

– Probability distributions

– Probability boxes



Model

Initial states (bounds)

Parameters (bounds)

VSPODE 
Mark Stadherr et al. (Notre Dame)

List of constants 

plus remainder

Taylor models

Interval Taylor series



Example ODE

dx1/dt = 1 x1(1 – x2)

dx2/dt = 2 x2(x1–1)

What are the states at t = 10?

x0 = (1.2, 1.1)T

1 [2.99, 3.01]

2 [0.99, 1.01]

VSPODE

– Constant step size h = 0.1, Order of Taylor model q = 5, 

– Order of interval Taylor series k = 17, QR factorization



VSPODE tells how to compute x1

1.916037656181642 1
0

2
1 +     0.689979149231081 1

1
2
0 +

-4.690741189299572 1
0

2
2 +    -2.275734193378134 1

1
2
1 +

-0.450416914564394 1
2

2
0 +  -29.788252573360062 1

0
2
3 +

-35.200757076497972 1
1

2
2 +  -12.401600707197074 1

2
2
1 +

-1.349694561113611 1
3

2
0 +     6.062509834147210 1

0
2
4 +

-29.503128650484253 1
1
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3
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4
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0
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3
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15.322357274648443 1
4

2
1 +      1.094676837431721 1

5
2

0 +

[ 1.1477537620811058, 1.1477539164945061 ]

where ‟s are centered forms of the parameters; 1 = 1 3, 2 = 2 1
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Results
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Still repeated uncertainties
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Subinterval reconstitution

• Subinterval reconstitution (SIR)

– Partition the inputs into subintervals

– Apply the function to each subinterval

– Form the union of the results

• Still rigorous, but often tighter 

– The finer the partition, the tighter the union

– Many strategies for partitioning

• Apply to each cell in the Cartesian product



Discretizations

2.99 3 3.01
0

1



clear

show Y1.4 in blue

show Y1.6 in blue; show Y1.4 in gray

show Y1.7 in blue; show Y1.6 in gray

show Y1.8 in blue; show Y1.7 in gray

clear

show Y2.4 in blue

show Y2.6 in blue; show Y2.4 in gray

show Y2.7 in blue; show Y2.6 in gray

show Y2.8 in blue; show Y2.7 in gray

import Y2.8

Importing variable from Y2
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Monte Carlo is more limited

• Monte Carlo cannot propagate incertitude

• Monte Carlo cannot produce validated results

– Though can be checked by repeating simulation

• Validated results from distributions can be obtained 

by modeling inputs with (narrow) p-boxes and 

applying probability bounds analysis

• Results converge to narrow p-boxes obtained from 

infinitely many Monte Carlo replications



Results

• Probability bounds analysis with VSPODE 
are useful for bounding solutions of 
nonlinear ODEs

• They rigorously propagate uncertainty 

about in the form of

Intervals

Distributions

P-boxes

Initial states

Parameters



Paper in AIChE Journal [American 

Institute of Chemical Engineers], 

February 2011 (on line May 2010)



PBA relaxes assumptions

• Everyone makes assumptions, but not all sets 

of assumptions are equal:

Linear Normal Independence

Montonic Unimodal Known correlation

Any function Any distribution Any dependence

• PBA doesn‟t require unwarranted assumptions



Wishful thinking

Analysts often make convenient assumptions 

that are not really justified:

1. Variables are independent of one another

2. Uniform distributions model gross incertitude

3. Distributions are stationary (unchanging) 

4. Distributions are perfectly precisely specified

5. Measurement uncertainty is negligible



You don‟t have to think wishfully

A p-box can discharge a false assumption:

1. Don‟t have to assume any dependence at all

2. An interval can be a better model of incertitude

3. P-boxes can enclose non-stationary distributions

4. Can handle imprecise specifications

5. Measurement data with plus-minus, censoring



Rigorousness

• “Automatically verified calculations”

• The computations are guaranteed to enclose 

the true results (so long as the inputs do)

• You can still be wrong, but the method

won‟t be the reason if you are



Take-home messages

• Using bounding, you don‟t have to pretend 

you know a lot to get quantitative results

• Probability bounds analysis bridges worst 

case and probabilistic analyses in a way that‟s 

faithful to both and makes it suitable for use 

in early design
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