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R rostaou Computer Simulations

* Computer simulation models are built to
~ mimic reality

o

* We do not always treat computer simulations
like reality

— Lots and lots of experiments are run

i

P

. — Many experiments are run that are prohibited in
il the real world
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,ﬁ * We do often treat computer simulation results
. as if they were reality
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=REL rostomouAT: Types ot Simulation Models

e Stochastic

¥
)

— Output 1s a random variable

— Blocking and randomization not an 1ssue, but
replication 1s

e Deterministic

— For a given set of inputs, the output will be the

3 { ]
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1 , .
L35 same each time the model 1s run
g
wid : C L %
— Blocking, randomization, and replication are
ul irrelevant
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e Iustration and Definitions

Noise, unknown factors,
model misspecification

Inputs: ~ Your Simulatonor Output(s): y
(variables that ( Model - (variable that you
~you can control) want to measure)

- Let's assume that there is some underlying model: ¥y = f(x)+¢
- This model (often called a metamodel) can be:
- mechanistic
- empirical
- linear regression model
- non-linear model
- generalized linear model
- Gaussian process model (aka Kriging)
- A goal of Experimental Design: find/fit a metamodel
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e People who run simulation models sometimes have
trouble choosing what conditions to run (input levels to
select) 1n order to fully characterize the input domain

« Additionally, once those conditions are selected, it
might be difficult to describe the outputs in a
meaningful way

* Experimental design and analysis provides a way to

— Choose conditions to run your model (i.e. select inputs)

R — Find a suitable mathematical model that allows you to
summarize your input-output data
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R tosTa Metamodeling: What is it?

« After we run a computer stmulation we would
like to relate the inputs to the output(s) through
the use of a closed form mathematical expression

. Examples of common empirical metamodels used

1n practice:
— Linear regression models (i.e. polynomial models)

,
2 [1,4]

sﬁ — Non-linear models (i.e. logistic regression model) [8]

Ly — Gaussian Process models (1.e. Kriging) [4,9]

N
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=B romououT: Experimental Designs

» The choice of experimental design can strongly
influence how “good” your results are

» Can create most designs in standard software
packages such as JMP or Design Expert

- * Require you to list

— Inputs (including input values or ranges)

— Output(s)

— Number of runs (trials you are willing to perform)

— If running optimal design — must specify assumed
\1 model
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Screening
Experiments

A

- —

Fractional

Fgg;?”r?l Factorial
g Design

Response Robust
Surface Parameter
Modeling Design

Central
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*’ oreupiQuick Example: Studying Ohm’s Law

SCHOO

Resistance (Ohms) - Circuit Voltage
Current (Amps) > Simulator L - Output

Resistance (ohms) [1—-2] Continuous

Current (amps) [4- 6] Continuous
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roscvoutfi X perimental Designs are Based on Goals

: Response Robust
Screening
) Surface Parameter
Experiments . :
Modeling Design
- _‘\
: Fractional Central : Space
Factorial : : Optimal be

Desian Factorial Composite Design Filling
g Design Design Design
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T soor Optimal Experimental Design

Optimal Design (examples: D-optimal and /-optimal)
* Pros

— Qreat for creating empirical models of many forms (especially
useful if using the linear regression approach)

— Useful for constrained design spaces

— Optimal designs for many linear regression models are the
standard designs (i.e. 2¥)

e Cons

— Requires specification of the metamodel before collecting any
data

— Non-linear optimal designs are dependent on unknown
parameters
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SCHOOL

Space Filling Design (examples: Latin Hypercube and Uniform)

b
g
= it b

~ * Pros

— Fill the design space

— Useful for unknown metamodel choices
e Cons

— Don’t cover the corners of the design space
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="Uoln Experimental Design Approach

 What 1f you don’t know a priori what type of
metamodel will work best for your results?

* Is there some type of experimental design that can
be used assuming you may choose several type of
metamodels to use?

— Yes

— A hybrid design approach that combines optimal
design with space filling design

L3 » Provides coverage to the corners of the design space and the

i ﬁ interior

 Useful for fitting linear regression models and for fitting
metamodels you might not have planned for
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osewoun:— Situations Useful for Hybrid Design

 Situation 1: You are running a simulation experiment and
would like good coverage of the design space. You are not
sure what metamodel you will use, but think that a linear
regression model choice 1s among the possibilities

 Situation 2: You are running a simulation experiment and
will most likely fit a linear regression model, but would like
to simulation some “random” trials to use as either

— Cross-validation or

— If your model 1s making bad predictions, points that can be used
to fit new models
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e rostouounT Research Comparison Method

* Previous research on these designs compared
optimal, space filling designs, and hybrid
designs based on:

— Scaled prediction variance
B

 For the linear regression model: % = Nx|,(X'X) 1x,
 For the Gaussian process mode:
— Fraction of Design Space plots [11]: plot the
empirical distribution function of scaled prediction

variance over the design region
— Used 1n the assessment of prediction capability [8]

4 5/4/11 NSES 16
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rv e Example FDS Plot

. Designs created for the case with
— 2 mput factors

— 27 order polynomial

— Sample size = 10

in Hypercube
/

phare Packing

" D-optimal

. 5/4/11 NSES 17
WWW.NPS.EDU




('—"7 NAVAL

my?. POSTGRADUATE

\\\/ SCHOOL

Hybrid Design Development

~ * Consider a saturated design for two factors and an anticipated
""4‘ main effects and two factor interaction model

a) l-optimal

7“\1

)

1
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b) Latin hypercube

WWW.NPS.EDU

« Here 1s an example of what the I-optimal design (a) and a
Latin hypercube space-filling design (b) look like and their
associated FDS plots

| | T T | |
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POSTGRADUATE Hybrid Design Points

-+ We augmented the space-filling design with optimal points
 Why?
— Wanted the space-filling design because it fills the interior
region of the design space

— Wanted the optimal design points

1 1 1
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« Unmanned systems can play a prominent role in diverse
information gathering missions such as:

— Search and Rescue (SAR)
— Intelligence, Surveillance and Reconnaissance (ISR)

+ Current research on unmanned system search requires the
use of sophisticated sensing, computation, coordination, and
communication capabilities

« This example 1s based on research conducted by a colleague
(Timothy H. Chung) and I

. *» The work presented seeks to revisit the used of exhaustive
« scarch strategies as the basis of the search process and
leverage new probability models as well as experimental
design to help inform and refine concepts of operations

5/4/11 NSES 21
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Consider an area of interest Lawnmower
with a missing person or a
target

A simulator was built to mimic
an unmanned system searching
the area

The simulator updates
probabilities about the location
of the person as a function of

time and observation

The goal of the StUdy 1S to ‘G - - - -Negative decision| |
study the effect of several 3 —Positive dedision | |
inputs of interest on five g
response variables 5 .
< 0ol '"""""""}-"""‘-,;
B
00 560 1 OIOO 1 5I00

Time step, t
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 Combined D-optimal design points with uniform design points

° The lnputs are: | Factor | Label | ].]:ascripﬁﬁn. | Range or Levels |
fa T False positive detection error [0.0, 1.0]
5] xo | False negative detection error [0.0, 1.0]
B(0) | z3 Tnitial aggregate belief [0.3,0.7]
B T4 Upper decision threshold [0.8, 0.95]
B TE Lower decision threshold [0.05, 0.2]

M(0) | x¢ | Initial target probability map {good, bad, none}
SP 7 Exhaustive search pattern  |{lawnmower, sweeping }

e A picture of the hybrid D-optimal and uniform design in two
of the factors 1s illustrated as

o.1)

SEARCHER_BETA
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Results

Lawnmower Factors |
Main Effects Interactions Squared Effects
X XX
Response |Intercept| e E 0 bad good |  none i bad zood none ot X x
% Correct Neg| -0.147 | -0.172 -0.888
% Correct Pos| -0.917 | -0.094 1.163 | -0.404 | -0.657 | 0.330 | 0.330 -0.436 | 0.198 | 0.238 | 0.271
E[TTCD]* 8.644 2.007 | 1.125 -0.268 -0.580 | -1.245
E[TTCND]* 8.462 1.800 1.175 0.415 | -0.319 -1.541
E[TTCPD]1* 8.737 2.262 | 0.961 | 0.110 -0.278 -0.533 [ -1.549
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